Studies on the utility of plant cellulose waste for the bioadsorption of crystal violet dye.

نویسندگان

  • S Mahesh
  • G Vijay Kumar
  • Pushpa Agrawal
چکیده

Several synthetic dyes employed in textile and food industries are discharged into aquatic environment. These visible pollutants in water damage environment, as they are carcinogenic and toxic to humans. The use of cost effective and ecofriendly plant cellulose based adsorbents have been studied in batch experiments as an alternative and effective substitution of activated carbon for the removal of toxic dyes from waste water. Adsorbents prepared from sugarcane baggase, were successfully used to remove certain textile dye such as crystal violet from an aqueous solution. The present investigation potentiate the use of sugarcane baggase, pretreated with formaldehyde (referred as Raw Baggase) and sulphuric acid (referred as Chemically Activated Baggase), for the removal of crystal violet dye from simulated waste water. Experiments were carried out at neutral pH with various parameters like dye concentration, temperature, contact time and adsorbent dosage. Efficiency of raw baggase was found better than chemically activated baggase for adsorption of crystal violet dye. The data obtained perfectly fits in the Freundlich adsorption isotherm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi element doped type-II heterostructure assemblies (N, S- TiO2/ZnO) for electrochemical crystal violet dye degradation

Herein, we report multi-element doped Type-II heterostructure assembly consists of N, S doped TiO2 and ZnO for electrochemical crystal violet dye degradation studies. Electrochemical measurements were performed on these synthesized N-S codoped TiO2/ZnO compositeheterostructured assemblies which are fabricated on Titanium (Ti) substrate. It was observed that a composite ele...

متن کامل

Removal of Crystal violet Dye from Aqueous Solution Using Surfactant Modified NiFe2O4 as Nanoadsorbent; Isotherms, Thermodynamics and kinetics Studies

The removal of crystal violet from aqueous solution by NiFe2O4 magnetic nanoparticles treated with sodium dodecyl sulfate was investigated. The modified magnetic nanoparticles were prepared by chemical reaction of a mixture of Ni+2 and Fe+3 ions mixture in aqueous solution at the presence of ammonia and then sodium dodecyl sulfate was utilized as an ionic surfactant to modified the obtained mag...

متن کامل

Application of Magnetic-modified Fe3O Nanoparticles for Removal of Crystal Violet from Aqueous Solution: Kinetic, Equilibrium and Thermodynamic Studies

The prepared magnetic-modified Fe3 O4 nanoparticles (Fe3 O4 -TAN) were used as adsorbent for removal of crystal violet (CV) from water solution. The effects of pH, contact time, dye concentration and temperature on adsorption were determined. The experimental data were analyzed using the Langmuir adsorption model. The data fitted well to the model with maximum adsorption capacities 84.0 mg/gund...

متن کامل

Removal of Brilliant Green and Crystal violet from Mono- and Bi-component Aqueous Solutions Using NaOH-modified Walnut Shell

In the present work, the simultaneous determination of Brilliant green (BG) and Crystal violet (CV) dyes with overlapped absorption spectra in binary mixture solution, was carreid out using the partial least squares (PLS) and direct ortogonal signal correction-partial least squares (DOSC-PLS) methods. The results obtained indicate that by applying DOSC on the calibration and prediction data for...

متن کامل

N, S-Codoped TiO2/Fe2O3 Heterostructure Assemblies for Electrochemical Degradation of Crystal Violet Dye

In contemporary research, “Heterostructure” assemblies play an important role in energy conversion systems, wherein the composite assemblies facilitate faster charge carrier transport across the material interfaces. The improved/enhanced efficiency metrics in these systems (electro/photo-electrochemical processes/devices) is due to synergistic interaction and synchronized charge transport a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental biology

دوره 31 3  شماره 

صفحات  -

تاریخ انتشار 2010